Atlas Safety \& Security Design, Inc.

Part 1 of 2

Code Changes Affect Stair Design: Watch Your Step As published in Forida ArchitectJ oumal

By Randall Atlas, Ph.D., AIA, CPF
Atlas Sa fety \& Sec urity Design, Inc .
Miami, Florida

This article is the first in a two-part series of updated information on changes in the build ing code goveming the design of stairs, handrails, ramps and steps. This information was last published in Florida Architect in 1987, prior to code changes.

Falls are the second leading cause of accidental death in the United States. Only motor vehicle accidents kill more people. In 1988, there were over 12,000 people killed in fa lls or about 12% of the a ccidental death total. Of these, 6,500 people were killed in falls around the home and 5,500 deaths occurred in public places. There are more than 300,000 disabling injuries in work-related falls each year according to a 1989 report by the National Sa fety Council.

Loss of footing is usually the primary event involved in a fall, with loss of balance or losing grip on an object as sec ondary events. More than 80% of the falls oc curred while the worker wasdescending a stairway, according to the U.S. Bureau of Labor

Statistics. As a result of the frequency and devastating effects of slip and fall injuries, the 1988 codes have updated their requirements for user sa fety.

An a na lysis of the National Building Codes: BOCA, the Building Owners and Code Administrators 1989; UBC , Uniform Building Code 1988; SBC, Southem Building Code 1988; SFBC, South Florida Building Code 1988; and LSC, Life Safety C ode 1988 reveals the va riations in risers a nd treads for sta irwa y c onstruction.

1) There shall be no variation exceeding $3 / 16$ of an inch in the depth of adjacent treads or in the height of adjacent risers and the tolerance between the largest and smallest riser or between the largest and smallest tread shall not exceed 3/8 of an inch.
2) SBC stair treads less than 10 inches shall have a one inch nosing on the overhang.
3) For existing stairs, the maximum riser heights for Class A and B are $71 / 2$ and 8 inches, respectively.
4) For existing stairs, the minimum tread depth for Class A and B are 10 and 9 inches, respectively.

Despite some minor va riations between codes, the established sta nda rds provide the necessary critical dimensions that are required for safe use of stairs. The first point in designing a safe and compliant stair and ramp is to understand and meet the locally applic able code requirements. A well-designed and properly-constructed sta ir system will have hand rails on both sides of the steps which are elevated 34 to 38 inc hes above the nosing of the tread. This is an increase of 4 inches over earlier codes. Tread surfaces should have a static anti-slip coeffic ient of friction of at least 0.50.

Stairs should have uniform height and have a minimum of ten risers per flight. La ndings should have an effective depth at least equal to the width of the stairs. Stairs with one, two, or three risers must have a wider tread of 13 inches and be designed more stringently (LSC , 1988) than nomal sta inways.

Sta ir designers should keep in mind the possibility that a stair, onginally designed without a resilient covering, may someday be carpeted, thereby signific antly reducing the effec tive tread depth of the steps. Designing such sta irs to provide slightly more tha n the minimum required tread depth is especially prudent in these cases. In addition, those responsible for ma inta ining stairs should keep in mind that the addition of resilient coverings may reduce the steps' tread dimensions to below the standard, and this will be made even worse if the coverings are not installed and mainta ined to be tight to the underlying steps.

Floor coverings, whether rugs or hard surface materials, should be avoided if they have busy pattems or they produce optical illusions, especially when people with weakened eyesight will be using the area. It is recommended that a subtle or solid light-colored floor covering is safest. Obstructionscan be seen more easily on this type of surface. Do not use dark carpeting on stairs because dark colors obscure the shadow cast by the step and make it diffic ult to judge where to place one's foot on the next riser.

It is further recommended that capet specific ations inc lude mention of non-skid backing for area rugs. Tacksordouble-faced tape can be used. If ceramic tile is used, specify those with slip-resistant glazes.

Slip and fall a ccidents often occur in tra nsition zones between ca pet and highlybuffed floors because of the change in coefficients of friction and texture. Thus, care must be taken in a reas where surface textures change. Sta nda rds for c oeffic ients of friction do not exist in the Southem Building Code, Uniform Building Code, BOCA code, or Life Safety code. Thus, an architect must use national standards from the National Bureau of Sta ndards, Americ an National Standa rds Institute, or the Americ an Society of Testing Materials.

Part 2 of 2

Code Changes Affect Stair Design: Watch Your Step As published in Forida ArchitectJ oumal, J an/Feb 1990

By Randall Atas, Ph.D., AIA, CPF
Atlas Safety \& Sec urity Design, Inc .
Miami, Florida

This article is the second in a two part series on important changes in the building codes which affect the design of stairs, handrails, ramps, and steps.

Ramp fall accidents represent only about ten percent of slip and fall accidents. Ramp
accidents are increasing because many other buildingsare being equipped with ramp systems and most new buildings have them at front entrances and at level changes on the interior.

Ramps accessible for the physically handic apped should have a maximum slope of 1 in 12 or approximately 5% grade. The slope should not vary between landings, with the landing being level. Directional changes should occur on the landing. Changes in elevation in areasconstituting part of a means of egress shall be by stairs or by ramps (SFBC 1988, 3102.Ic). Changes in elevations of 12 inches or less may be either ramps or stairs, provided that where a stair is to be used it shall be made more noticeable by methods such as the installation of prominent handrails, special markings, and special lighting. This is a change from the earliercodes. Furthemore, changes in elevation between 12 and 21 inches shall be by ramps.

The NFPA 101 Life Safety Code 1988 Edition section 5-1.6 now permits sta irs to have fewer than three risers. However, they must meet even more stringent requirements than those forother stairs because of the record of accidents. Single risers and twonisercombinations must be designed more carefully, and hence the requirement for a larger minimum tread size of 13 inches.

Means of egress such aslandings, balconies, comidors, passageways, floor or roof openings, ramps, aisles, porc hes or mezza nines that are more than 30 inc hes above the floor shall be provided with guardsto prevent falls over the open side. Sta irs that are provided with handrails need not be provided with guards.

The height of the guards shall be measured vertic ally to the top of the guard from the surface adjacent thereto. Guards shall not be less than 42 inches high. However, guards within dwelling units may be 36 inc hes high. Open guards shall have intermediate rails or an omamental pattem such that a sphere six inches in dia meter cannot pass through any opening.

Handrails shall not be less than 34 inches normore than 38 inches above the surface of the tread, measured vertic ally to the top of the rail from the tread at the leading edge. Existing handrails shall not be less than 30 inches nor more than 38 inches above the uppersurface of the tread, measured vertic ally to the top of the leading edge.

A clearance of at least $11 / 2$ inches between handrail and wall is required to which fasteners shall be provided for new handrails. (Life Safety Code, 1988). Ha ndrails shall have a circular cross section with an outside diameter of at least 1.25 inches and not greater than 2 inches.

Architects have always used stairways a nd handrails as a creative and a esthetic design detail. If the handrail is not designed for the closing human hand, it poses a lia bility risk despite its a esthetic contribution. If the stairway or level change is not designed to alert the user to a difference in surfaces and heights and the materials chosen don't provide suffic ient fric tion to resist loss of balance, it poses a lia bility risk.

Design details can contribute to significantly reducing the opportunity for stairway accidents by:

Directing attention to the presence of the sta irway or level change
Foc using attention on the stairs and ensuring that the steps are clearly defined
Providing handrails for support and assistance, and balustrades to prevent falls from the sta irs
Avoiding features likely to lead to the misuse of the stainway by children Avoiding increasing the hazards of stairs by requiring decoration and maintenance above the stairs
Providing the quality and quantity of lighting for the stairs to be clearly visible.
Injury to the building user can be a liability issue for the architect, a nd preventative steps should be taken to reduce and limit exposure. Stairs, ramps, a nd walkway surfaces should meet all applicable codes and national standards. It may also be necessary to enclose operational directions on materials that are specified. For example, if a floor surface is not meant to be buffed orwaxed, it should be so indic ated. Even if all good mea sures are taken, there Is no guarantee that injury and ensuring litigation will not occur. However, the issue of negligence and standard of care will be more sympathetic to the responsible architect.

(from Rorida ArchitectJ oumal, J anuary/ February, 1990)

